1,175 research outputs found

    Integrated context-aware and cloud-based adaptive home screens for android phones

    Get PDF
    This is the post-print version of this Article. The official published version can be accessed from the link below - Copyright @ 2011 Springer VerlagThe home screen in Android phones is a highly customizable user interface where the users can add and remove widgets and icons for launching applications. This customization is currently done on the mobile device itself and will only create static content. Our work takes the concept of Android home screen [3] one step further and adds flexibility to the user interface by making it context-aware and integrated with the cloud. Overall results indicated that the users have a strong positive bias towards the application and that the adaptation helped them to tailor the device to their needs by using the different context aware mechanisms

    Tailoring electronic and optical properties of TiO2: nanostructuring, doping and molecular-oxide interactions

    Get PDF
    Titanium dioxide is one of the most widely investigated oxides. This is due to its broad range of applications, from catalysis to photocatalysis to photovoltaics. Despite this large interest, many of its bulk properties have been sparsely investigated using either experimental techniques or ab initio theory. Further, some of TiO2's most important properties, such as its electronic band gap, the localized character of excitons, and the localized nature of states induced by oxygen vacancies, are still under debate. We present a unified description of the properties of rutile and anatase phases, obtained from ab initio state of the art methods, ranging from density functional theory (DFT) to many body perturbation theory (MBPT) derived techniques. In so doing, we show how advanced computational techniques can be used to quantitatively describe the structural, electronic, and optical properties of TiO2 nanostructures, an area of fundamental importance in applied research. Indeed, we address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by showing how to combine nanostructural changes with doping. With this aim we compare TiO2's electronic properties for 0D clusters, 1D nanorods, 2D layers, and 3D bulks using different approximations within DFT and MBPT calculations. While quantum confinement effects lead to a widening of the energy gap, it has been shown that substitutional doping with boron or nitrogen gives rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Finally, we report how ab initio methods can be applied to understand the important role of TiO2 as electron-acceptor in dye-sensitized solar cells. This task is made more difficult by the hybrid organic-oxide structure of the involved systems.Comment: 32 pages, 8 figure

    The role of high growth temperature GaAs spacer layers in 1.3-/spl mu/m In(Ga)As quantum-dot lasers

    Get PDF
    We investigate the mechanisms by which high growth temperature spacer layers (HGTSLs) reduce the threshold current of 1.3-/spl mu/m emitting multilayer quantum-dot lasers. Measured optical loss and gain spectra are used to characterize samples that are nominally identical except for the HGTSL. We find that the use of the HGTSL leads to the internal optical mode loss being reduced from 15 /spl plusmn/ 2 to 3.5 /spl plusmn/ 2 cm/sup -1/, better defined absorption features, and more absorption at the ground state resulting from reduced inhomogenous broadening and a greater dot density. These characteristics, together with a reduced defect density, lead to greater modal gain at a given current density

    Improved Temperature Performance of 1.31-mu/m Quantum Dot Lasers by Optimized Ridge Waveguide Design

    Get PDF
    In this letter, we demonstrate the importance of the fabricated device structure for the external differential efficiency, threshold current density, and maximum operating temperature for ground state operation of a 1.31-mu/m quantum dot laser. The introduction of a shallow ridge etch design and selective electroplating of the gold bondpads is demonstrated to offer improved performance in comparison to a deep ridge etch design with thinner evaporated gold bondpads

    Dependence of the Electroluminescence on the Spacer Layer Growth Temperature of Multilayer Quantum-Dot Laser Structures

    Get PDF
    Electroluminescence (EL) measurements have been performed on a set of In(Ga)As-GaAs quantum-dot (QD) structures with varying spacer layer growth temperature. At room temperature and low injection current, a superlinear dependence of the integrated EL intensity (IEL) on the injection current is observed. This superlinearity decreases as the spacer layer growth temperature increases and is attributed to a reduction in the amount of nonradiative recombination. Temperature-dependent IEL measurements show a reduction of the IEL with increasing temperature. Two thermally activated quenching processes, with activation energies of Ëś 157 meV and Ëś 320 meV, are deduced and these are attributed to the loss of electrons and holes from the QD ground state to the GaAs barriers. Our results demonstrate that growing the GaAs barriers at higher temperatures improves their quality, thereby increasing the radiative efficiency of the QD emission

    High-performance three-layer 1.3-/spl mu/m InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents

    Get PDF
    The combination of high-growth-temperature GaAs spacer layers and high-reflectivity (HR)-coated facets has been utilized to obtain low threshold currents and threshold current densities for 1.3-/spl mu/m multilayer InAs-GaAs quantum-dot lasers. A very low continuous-wave (CW) room-temperature threshold current of 1.5 mA and a threshold current density of 18.8 A/cm/sup 2/ are achieved for a three-layer device with a 1-mm HR/HR cavity. For a 2-mm cavity, the CW threshold current density is as low as 17 A/cm/sup 2/ for an HR/HR device. An output power as high as 100 mW is obtained for a device with HR/cleaved facets

    Quantum-ionic features in the absorption spectra of homonuclear diatomic molecules

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).We show that additional features can emerge in the linear absorption spectra of homonuclear diatomic molecules when the ions are described quantum mechanically. In particular, the widths and energies of the peaks in the optical spectra change with the initial configuration, mass, and charge of the molecule. We introduce a model that can describe these features and we provide a quantitative analysis of the resulting peak energy shifts and width broadenings as a function of the mass.We acknowledge financial support from the European Research Council Advanced Grant DYNamo (Grant No. ERC-2010-AdG-267374), Spanish Grants No. FIS2013-46159-C3-1-P and No. PIB2010US-00652, and Grupo Consolidado UPV/EHU del Gobierno Vasco (Grant No. IT578-13). A.C.-U. acknowledges financial support from the Departamento de Educacion, Universidades e Investigacion del Gobierno Vasco (Reference No. BFI-2011-26).Peer Reviewe

    Magneto-optical study of thermally annealed InAs-InGaAs-GaAs self-assembled quantum dots

    No full text
    We report a magneto-optical study of InAs-InGaAs-GaAs self-assembled quantum dots (QDs) subjected to post-growth thermal annealing at different temperatures. At low temperatures annealing strongly affects the bimodal distribution of QDs; at higher temperatures a strong blueshift of the emission occurs. Magnetophotoluminescence reveals that the annealing increases the QD size, with a larger effect occurring along the growth axis, and decreases the carrier effective masses. The main contribution to the blueshift is deduced to be an increase in the average Ga composition of the QDs. The inadvertent annealing which occurs during the growth of the upper AlGaAs cladding layer in laser structures is also studied

    Uniqueness and Non-uniqueness in the Einstein Constraints

    Full text link
    The conformal thin sandwich (CTS) equations are a set of four of the Einstein equations, which generalize the Laplace-Poisson equation of Newton's theory. We examine numerically solutions of the CTS equations describing perturbed Minkowski space, and find only one solution. However, we find {\em two} distinct solutions, one even containing a black hole, when the lapse is determined by a fifth elliptic equation through specification of the mean curvature. While the relationship of the two systems and their solutions is a fundamental property of general relativity, this fairly simple example of an elliptic system with non-unique solutions is also of broader interest.Comment: 4 pages, 4 figures; abstract and introduction rewritte
    • …
    corecore